Segmented Generative Networks: Data Generation in the Uniform Probability Space
نویسندگان
چکیده
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملOptimizing the Latent Space of Generative Networks
Generative Adversarial Networks (GANs) have been shown to be able to sample impressively realistic images. GAN training consists of a saddle point optimization problem that can be thought of as an adversarial game between a generator which produces the images, and a discriminator, which judges if the images are real. Both the generator and the discriminator are commonly parametrized as deep con...
متن کاملSupplementary materials for: Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Assume a distribution p(x) that we wish to produce samples from. For certain distributions with amenable structure it may be possible to write down directly an independent and identically distributed (IID) sampler, but in general this can be difficult. In such cases where IID samplers are not readily available, we may instead resort to Markov Chain Monte Carlo (MCMC) methods for sampling. Compl...
متن کاملData Augmentation Generative Adversarial Networks
Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation (Krizhevsky et al., 2012) alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of...
متن کاملGeneration of Geometric Models and Meshes from Segmented Image Data Generation of Geometric Models and Meshes from Segmented Image Data
Domain descriptions for numerical analyses originating from 3D images pose significant challenges as they have to be converted to a discretization suitable for a numerical analysis. Methods that perform this process by converting the image data directly to an analysis mesh suffer from a number of disadvantages with respect to both the flexibility to create well controlled meshes, and with respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2020
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2020.3042380